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Causality and the scalar field energy 
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Abstract. The evolution of the scalar field energy density is considered. It is shown that 
the total energy outside an expanding light cone does not increase. This result is extended 
to a general density in n dimensions, when certain conditions are satisfied. The apparent 
conflict with previous proofs of acausal behaviour for relativistic densities is discussed. 

1. Introduction 

Acausal behaviour in relativistic quantum mechanics has its roots in the problem of 
localisation. Newton and Wigner [ l ]  showed how to obtain a localised state, only 
requiring that if this state is translated then it is orthogonal to the original state, that 
is their scalar product is zero. Hegerfeldt [2] and others [3] then proved that for any 
t > 0, the original and translated states cease to be orthogonal however far the transla- 
tion. Hence there appears to be instantaneous spreading of the Newton- Wigner 
probability density. Any superluminal spreading is acausal, as motion outside the light 
cone into the spacelike separated region may appear to another observer as proceeding 
backwards in time (see the article by Feynman in [4]). More recently Rosenstein and 
Usher [ 5 1  have demonstrated superluminal spreading for a particular closed-form 
solution of the positive-energy Klein-Gordon equation. 

The underlying reason for this behaviour is in the nature of the time evolution 
operator for a positive-energy relativistic particle. In momentum space this operator 
has the simple form: 

exp(-iwt) = exp[--it(m2+p’)’’’]. 

However, in configuration space the w operator transforms to the operator 

(j = F - ~ ~ F  = (,* - v ~ ) ~ / ’  

in our units (where F is the Fourier transform operator). As discussed below this 
operator is non-local and so allows instantaneous spreading. This is also true of the 
evolution operator exp( -i&) (see, for example, Hegerfeldt [2]). 

Our approach is to consider the energy density of the (complex) scalar field, namely 

i(I(~/W(I,l2+ I(~/W(I,I’+ m21(I,12) 

(throughout we use units where c = l) ,  where (I, evolves according to the Klein-Gordon 
equation. We shall show that the total energy outside the light cone cannot increase, 
and relate this to causality. 
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2. Evolution of the energy density in 1 + 1 dimensions 

The scalar field energy is taken as H =i(ldo+12+ldx+/2+ m21+i2) which is obviously 
positive definite (here a, stands for d/dxp), and the momentum is 

We define Ho,,( t )  to be the integrated energy outside the light cone at time t. Suppose 
the light cone occupies the interval 1x1 < d at t = 0. We consider the energy density for 
x > 0 for simplicity. Then 

P = -i(do+*ax+ +d,$*d,$). 

and 
03 cc 

H d t )  = 1 H ( t ,  x )  dx  = 1 i ( l ~ o $ 1 2 + l ~ x $ 1 2 + ~ 2 1 + 1 2 )  dx (2.lb) 
d + r  d + t  

so the time change in Ho,,(t) is 
X 

aoHo,,(t) = d o  H ( t ,  x)  dx  = -H(r ,  d + t )  + aoH( t, X )  dx. (2.2) 

To evaluate doH in the second term we note that H and P satisfy the continuity 
equation: 

as is well known and may easily be verified. Thus 

ld:, 
doH+d,P=O (2.3) 

CO 

doHo,,( t )  = - H (  t, d + t )  - d,P( t, X)  dx  
I d + ,  

= - H (  t, d + t )  + P( t ,  d + t )  (2.4) 
assuming that P at infinity is zero. 

Thus the rate of change of the integrated energy outside a specified light cone is 
equal to the momentum density minus the energy density at the edge of the light cone. 
Only the energy density and momentum density have to be calculated at a point to 
see how the total energy outside the light cone from that point is changing with time. 
Equation (2.4) tells us that if H > )PI at the edge of the light cone, then the total energy 
outside the light cone is decreasing, as we would expect for causal behaviour. Conversely 
P > H would imply that the energy outside the light cone is increasing, in contradiction 
to causality. 
Note. Equation (2.4) is relevant for any density provided only that (i) a continuity 
equation is satisfied, and (ii) the current disappears at infinity. In general, these 
conditions can always be satisfied, although unless the current is known directly there 
is little gain in using (2.4). We later extend the relation (2.4) to n dimensions. 
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Now the first line of the above expression is non-negative by Schwarz's inequality and 
the second line is positive definite, so H 2 -  P230 hence H S I P I .  We can see from 
(2.4) that energy cannot increase outside the light cone. This is our result in l + l  
dimensions. 

We shall now turn to the (n+l)-dimensional case: here we show that the total 
energy inside the light cone cannot decrease-which by energy conservation is 
equivalent to proving that the total energy outside the light cone cannot increase. 

3. Extension to n + 1 dimensions 

We first derive a result for a general density p in n space dimensions, before returning 
to the energy density. 

Let V(t) be a region of space, depending on time t, defined as follows: (i)  V( t )  is 
a finite region, (ii) if t + S t  > t 3 to, then V( t + S t )  is obtained from V( t )  by allowing 
each point of the surface bounding V( t )  to travel along the outward normal a distance 
St .  Let p be a positive-definite density, and J an associated current satisfying the 
continuity equation dop + V - J = 0, equivalently (using the repeated suffix notation) 

dop + d,J" = 0. (3.1) 

Define M (  t )  as the density integrated over the region V( t ) ;  then 

p ( x ,  t + S t )  d V - I  p ( x ,  t )  d V  I V ( t + 6 r )  V ( , )  

6 M (  t )  = 

and therefore 

S M  ( t ) = ( J p (x, t + st )  d V - p (x, t + S t ) d V) 
V ( t i 8 t )  V ( t )  

p ( x ,  t + S t )  d V - 1  p ( x ,  t )  dV). 
V ( t )  

If S t  is small the first term may be approximated by 

p ( x ,  t + S t )  dSSt-  p ( x ,  t )  dS6t  I, , l)  I,,., 
where S( t )  is the surface of V( t ) ,  therefore 

Letting S t  + 0 

Now using (3.1) we obtain 
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We can use the divergence theorem in n dimensions to evaluate the second term above 
as a surface integral; this gives 

r 

where J ,  is the normal component of J out of V ( t ) .  Now suppose: 

(i) p ( x ,  t ) z O  v x, t 

(ii) p(x ,  t )  3 IJ(x, t)l v x, t 

then (3.2) shows that &220  Vt .  This is our result in n-dimensional space. It should 
be noted that ( p ,  J) does not have to be the components of a rank-one Lorentz tensor 
for (3.2) to be valid. 

We now apply (3.2) to the scalar field n-dimensional energy density, identifying p 
with 

H = P O  = q(a,+*a,+ +a,+*a,+ + m2+*+) (3.3) 

pa = -$(a,+*a,$ +a,+*a,$) = -Re(ao$*aa+) (3.4) 

a,Po+aaPa = 0 (3.5) 

and J” with 

Again it is known that the continuity equation 

is satisfied assuming the n-dimensional Klein-Gordon equation. 

tells us that 
If we define Hi,( t )  to be the total energy inside V( t ) ,  then the relationship (3.2) 

P 

& i n =  J [ ~ ( x ,  t)-Pn(x, t > ~ d ~  
S ( f )  

where P, is the normal component of P. 
We shall prove that H 2 \P,/ Vx, t .  

(3.6) 

Proof: (Note: we shall not use the repeated suffix convention in this proof.) From (3.3) 
and (3.4): 

2 

a ( Iaa+l2)* - 1 (aa+)21 by Schwarz’s inequality 
a = l  a = l  

3 0  by the triangle inequality. 

So H 2 [PI, hence H 3 
energy outside V( t )  cannot increase. 

It now follows from (3.6) that Hi, 3 0; that is, the total 
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4. Conclusion and discussion 

The results of section 3 may be summarised by the following propositions and 
corollaries. 

Proposition 1 .  Let p be a real-valued function defined on A = iw x R", the Minkowski 
space in some frame of reference, and J = (J', . . . , J " )  be a real-valued space vector 
defined on A. Suppose a finite region V( t ) ,  surface S (  t ) ,  expands outwards with the 
speed of light, so that S ( t )  is a 'light shell'. If 

M ( t )  = 1 p ( x ,  t )  d v  
V ( t )  

and p, J satisfy the continuity equation (3.1), then the rate of change of M with respect 
to time is given by (3.2). 

Corollary. If p is non-negative and p a IJ/ everywhere in A then M (  t )  cannot decrease; 
equivalently, p integrated over the region outside the light shell cannot increase. 

Proposition 2. The total energy outside the light shell of the scalar field governed by 
the Klein-Gordon equation cannot increase. 

Corollary. The evolution of an isolated pulse of energy initially concentrated in a region 
V(0) is causal; that is the energy remains concentrated in V(t). 

This last result is in contrast to the evolution of the Newton-Wigner probability 
density considered by Hegerfeldt and others, despite the fact that the evolution of 
both densities is governed by the Klein-Gordon equation. In the latter case the 
integrated probability outside the light shell may increase as is shown for a particular 
case by Rosenstein and Usher [ 5 ] .  

We can further relate these results to causality in the general case provided we are 
careful about the interpretation. Firstly, consider a classical relativistic fluid. The 
current J is pu where U is the velocity. The statement p lJl is therefore equivalent 
to luI S 1 (that is, the velocity of the fluid is bounded by the velocity of light). 

It is not possible to take this directly over to quantum mechanics, since it is not 
obvious that energy can be thought of as a fluid. For example, thinking naively of 
quanta as particles, we could have a few fast moving quanta whose presence is masked 
by many surrounding slow moving quanta, so that IJlSp is satisfied even if some 
quanta are superluminal. However, suppose we wish to transmit information, or 
produce an effect at a distance, by means of a pulse of energy whose flow is governed 
by the Klein-Gordon equation, and that in order to do this we need to be able to 
ignore the effect of the environment on the pulse. If this is the case we must assume 
that the motion of the energy pulse is essentially unaffected by the removal of all, or 
effectively all, the other energy. If the pulse is emitted from a region V at time t = 0, 
and V ( 0 )  = V ,  proposition 2 shows that the total energy outside the light shell remains 
small, so that no effect can be produced outside the light shell. In this sense causality 
is obtained. 

A further point arises from the acausality theorems of Hegerfeldt and others. If 
the energy arises from a positive-energy solution of the Klein-Gordon equation, and 
the evolution is smooth, then the energy H takes the form (in the case n = 1) 

H = f ( / L $ 1 2 + l a x ~ / ( 2 +  m21+12) 
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where 6 = F-’wF, F being the Fourier transformation operator, while wF$(k)  = 
( m 2 +  k2)”2F$(k) .  The energy can only be located in a bounded region V of space at 
any instant (in the given Lorentz frame) if 64, a,$ and $ simultaneously vanish outside 
V. In the appendix we show this to be impossible. However, at time t = 0 the total 
energy will be small outside some sufficiently large region V .  Proposition 2 then shows 
that the energy outside the light shell emanating from the surface of V at time t = 0 
remains negligible. 

Appendix 

In this appendix we prove that 6 is non-local in the case n = 1. Our argument is 
essentially similar to that of Hegerfeldt [2], but we give it here for completeness. 

Suppose Q, = 69 where t,b has compact support. If Q, also has compact support the 
Fourier transforms FQ, and F$ are entire functions when extended to @. Now by the 
definition of 6, 

FQ,(z)= ( m ’ + ~ ~ ) ’ ’ ~ F t , b ( z ) .  

This contradicts the fact that 

FQ, ( 2 )  = ( z  - im)P@( z )  F $ ( z )  = ( ~ - i m ) ~ U ( z )  

where p and q are non-negative integers, while @(im) and U(im) are non-vanishing. 
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